Sentiment analysis for Turkish Twitter feeds

Published:

Recommended citation: Çoban Ö., Özyer B., and Özyer G. T. "Sentiment analysis for Turkish Twitter feeds," 2015 23nd Signal Processing and Communications Applications Conference (SIU), Malatya, Turkey, 2015, pp. 2388-2391, doi: 10.1109/SIU.2015.7130362.

[PDF]

Özet

Duygu analizi sosyal medya izleme çalışmaları için en kullanışlı yöntemlerden birisidir. Sosyal medya (Kişisel Blog, Twitter, Facebook) üzerinden elde edilen veri üzerinde duygu analizi uygulanarak, bir şirketin müşteri servisinin, müşterilerden gelen olumlu ve olumsuz geri bildirimlere göre müşteri memnuniyetini saglaması ve maliyetleri düşürmesi sağlanabilir. Ayrıca ekonomik, ticari ve kullanıcılara yönelik fikir madenciliği gibi çeşitli alanlarda kullanılarak anlamlı bilgiler elde edilebilir. Bu çalışmada, Türkçe Twitter mesajlardan oluşturulan veri seti metin sınıflandırma yöntemleri ile analiz edilerek olumlu veya olumsuz olup olmadıgı incelenmiştir. Deneysel sonuçlar SVM, Naive Bayes, Multinom Naive Bayes ve KNN algoritmalarıyla elde edilmiştir. Vector Space model ile temsil edilen öznitelikler, kelime torbası (Bag of Words, BoW) ve N-Gram model olmak üzere iki farklı şekilde elde edilmiş ve bu durumun sınıflandırma sonuçlarına olan etkisi incelenmiştir.

Abstract

Sentiment analysis is one of the most useful tools in social media monitoring. Implementing sentiment analysis on data gained from social media (Blogs, Twitter, and Facebook) can increase the customer satisfaction and decrease the costs for a company. Also sentiment analysis can be used in various domains, such as economic, commercial and opinion mining for the users to get meaningful information. In this study, Turkish Twitter feeds collected from Twitter API have been analyzed in terms of the sentiment context whether positive or negative using document classification methods. Experimental results have been conducted on machine learning algorithms such as SVM, Naive Bayes, Multinomial Naive Bayes and KNN. The features represented by vector space are extracted from two different models which are Bag of Words and N-Gram. The experimental results have been investigated on the effect of classification methods.

Use Google Scholar for full citation